The determinants of household credit in Spain

Fernando NIETO (*)
Banco de España

Abstract: This paper estimates a single-equation model to analyse the main explanatory factors behind changes in Spanish household credit, considering that the behaviour of its determinants is exogenous. According to the evidence reported, household borrowing is determined in the long run by real spending, gross wealth and the repayment term for outstanding credits, which have a positive influence, and by the cost of loans and the unemployment rate, the effect of which is of a negative sign. Developments in the short run are influenced by changes in long-term interest rates and in employment. The evidence offered suggests that, in general terms, the financing received by households over the period analysed is in line with what may be inferred from its determinants; however, the high volume of debt incurred entails greater exposure of the sector to unexpected changes in its income, in its wealth or in the cost of borrowing, especially in a setting in which floating-rate loans are increasingly significant.


Keywords: Credit, Household, Error correction.

Título: Los determinantes del crédito de los hogares españoles

Resumen: En este trabajo se estima un modelo uniecuacional para analizar los principales factores explicativos de la evolución del crédito de los hogares españoles, considerando que el comportamiento de sus determinantes es exógeno. De acuerdo con los resultados obtenidos los fondos captados por las familias vienen determinados a largo plazo por el gasto real del sector, su riqueza bruta y el plazo de amortización de los créditos vivos, que influyen positivamente, y por el coste de los préstamos y la tasa de paro, que afectan con signo negativo. La evolución a corto plazo se ve influida, además, por las variaciones de los tipos a largo plazo y del empleo. La evidencia que se aporta sugiere que, en términos generales, la evolución de la financiación recibida por los hogares en el periodo analizado está en línea con lo que se deduce de sus determinantes, si bien el elevado volumen de pasivos alcanzado supone una mayor exposición del sector a variaciones inesperadas en su renta, en su riqueza o en el coste de la financiación, especialmente en un contexto en el que los préstamos a tipo de interés variable son cada vez más importantes.


Palabras Clave: Crédito, Hogares, Corrección del Error.

(*) Monetary and Financial Studies Department. Directorate General Economics, Statistics and Research. Alcalá 50, 28014 Madrid. fnieto@bde.es Tel. 91 338 5839

I gratefully acknowledge the help and comments from Fernando Restoy, Juan Ayuso, Roberto Blanco, Luis A. Maza and an anonymous referee. I also thank participants in the seminar held at the Banco de España. The opinions in this paper are the responsibility of the author and, therefore, do not necessarily coincide with those of the Banco de España

Nota: Trabajo recibido el 7 de noviembre 2008. Aceptado el 15 de marzo 2009
1. INTRODUCTION AND MOTIVATION

In the past decade, credit extended to households1 by resident financial institutions (the main source of financing for this sector) has expanded rapidly, with annual average growth of close to 17%, which has entailed a significant increase in Spanish household indebtedness.

As Chart 1 shows, the high rate of increase of funds raised by households, mainly for property purchases, has led the sector’s debt as a percentage of its disposable income to triple during the period under study, standing in 2006 at around 120%. Despite the strong increase in indebtedness, the decline in the cost of borrowing and the lengthening of loan repayment terms have meant that the behaviour of the associated debt burden2 has not been so expansionary. Nonetheless, these developments have been against a background in which household saving has declined considerably, thus compressing the buffer available to withstand unexpected shocks.

Against this backdrop, it is very important to analyse the behaviour of household borrowing and its possible consequences for the economy’s macroeconomic and financial stability3. On one hand, a rapid increase in the sector’s debt may be conducive to the emergence of demand pressures that then take the form of inflationary pressures. On the other, a very high level of debt will diminish households’ responsiveness to potentially unexpected changes in their wealth, their income or in interest rates, contributing to heightening the effects that an adverse economic shock would have on their consumption and investment decisions4. At the same time, a very large volume of debt

---

1 Includes private non-profit institutions serving households.
2 The means of calculating this concept can be found in Del Rio (2002).
3 See, for example, Davis (1992), Malo de Molina and Restoy (2004) or Nieto et al. (2001).
4 For greater details on the effects that an excessive level of debt may have on consumption, see Martínez-Carrascal and del Rio (2004).
bears on the level of risk withstood by banks, potentially impacting the soundness of the financial system as a whole in the face of debt default situations.

However, the implications of growth in borrowing may differ depending on the explanatory factors behind such growth. It is reasonable to think that a substantial portion of the recent growth in Spanish household credit has been structural, mirroring the new macroeconomic environment in place since Spain joined the euro area. Characterising this has been a most sizeable reduction in interest rates, highly buoyant economic activity and a more stable macroeconomic environment, which has entailed substantial job creation and the maintenance of relatively high levels of spending (see Chart 2). At the same time, the development of the Spanish financial sector has also harboured factors which, on the supply side, may have allowed the level of the sector’s debt to rise. For instance, greater competition may have exerted downward pressure on borrowing costs and improvements in risk management over time have been propitious to the lengthening of loan maturities.
As a result of the foregoing, tools are needed, first, to help analyse that part of household credit developments which may be explained fully by the behaviour of the determinants of this variable; and further, to qualify potential financial risks associated with different future scenarios for the trend of the main macroeconomic variables5.

To conduct an appropriate analysis of household borrowing, this variable must be set in relation to the relevant real variables, as both are jointly determined. However, integrating a fully developed financial block into a general macroeconomic model makes the design of the model analytically complicated, and poses significant problems for the proper aggregation of the behaviour of individual agents, since the effects of a good number of the financial variables on real magnitudes are non-linear.

Accordingly, most existing macroeconomic models are lacking a financial block, but they are supplemented with the results obtained from other, more partial modellings6, ones which allow a more detailed treatment of specific aspects, including financial aspects. Within these equations, which we might call satellite equations, are those that study the determinants of credit to different agents, in particular households.

For these satellite models, a multiequational approach is occasionally adopted, as is the case in Martínez-Carrascal and Del Río (2004). These authors illustrate the bidirectional interaction between credit and household spending variables. In other cases, in contrast, a single-equation model is needed, where credit is the only endogenous variable, while the behaviour of its determinants is considered exogenous. This is what happens, for example, under the projection exercises conducted by many central banks, where a general macroeconomic model is taken as a basis and a central scenario for real variables is obtained.

On the basis of these considerations, Nieto (2003) presented a model to analyse the determinants of Spanish household credit. As indicated in this paper and in Malo and Restoy (2004), during the latter years of the sample analysed certain changes were observed in the sensitivity of debt to changes in some of its explanatory variables. In addition, the predictive capacity of that model has deteriorated notably in recent years, affected also by the fact that some exogenous variables have altered as a result of the changes introduced into Spanish National Accounts7. Accordingly, this paper presents an alternative modelling that resolves these problems.

The rest of the paper is structured as follows. The second section briefly reviews the literature on the determinants of household financing. The third section presents the findings of the estimation of a single-equation empirical model for household borrowing, comparing it with that existing to date. Finally, the fourth section draws the main conclusions.

---

6 For example, see Sastre and Fernández-Sánchez (2005).
7 See Banco de España (2005 b).
2. REVIEW OF THE LITERATURE ON THE DETERMINANTS OF HOUSEHOLD FINANCING

1.1 Theoretical determinants

From a theoretical standpoint, changes in credit obtained by households are linked both to supply- and demand-side factors. However, in many cases it is very difficult to isolate both channels, since the different variables that may help explain the behaviour of financing simultaneously effect the supply of and demand for loanable funds.

As one of the main determinants of recourse to credit, the theoretical and empirical literature indicates the so-called scale variables: expenditure, income or economic activity, which proxy for the permanent income concept. In this respect, households can resort to the credit market to obtain funds with which to meet their consumption and investment decisions when these cannot be financed by their current level of income. In addition, the impact that the business cycle may have on financial institutions’ lending policies must be taken into account as it bears on these institutions’ perception of the macroeconomic risks prevailing at each point in time.

A second relevant factor concerns the cost of financing, changes in which have an adverse bearing on the demand for loans. Regarding supply, the ultimate result is uncertain. On one hand, there will be a positive impact on the volume of loanable funds provided that a rise in interest rates increases the net interest income obtained by credit institutions. But, on the other, a credit rationing situation may come about, as indicated by Stiglitz and Weiss (1981), insofar as the financial sector might perceive greater risks associated with an increase in the cost of loans.

In this respect, an important factor when assessing household creditworthiness, and therefore the risks borne by financial institutions on extending fresh credit, relates to the financial position of the sector. Thus, for example, an increase in household real estate wealth may reduce the asymmetrical information problems in this market, as such wealth acts as collateral in a very large proportion of loans, making credit institutions readier to extend fresh financing to the sector, in a similar fashion to the mechanism described in the balance-sheet channel literature in the case of companies. Also, inasmuch as wealth may be a proxy for the permanent income concept, an increase in this variable would tend to raise households’ borrowing capacity.

Other factors that play a determining role in changes in borrowing relate to the development and liberalisation of the financial sector, and to the better control and management of the risks assumed by financial institutions. Greater competition between banks and financial innovation has thus led to the emergence of new instruments (floating-rate loans, variable-maturity loans, securitisation) that allow both credit supply and demand to be higher and under more favourable financial conditions. However, the measurement of these factors is complex.

Lastly, demographic and labour market-related factors are also possible determinants of household borrowing. In this sense, an increase in household debt may be driven, for example, by growth in

---

8 For greater detail, see Iacoviello (2005).
9 For example, see Bernanke, Gertler y Gilchrist (1996).
10 See Muellbauer and Murphy (1997) for UK and Bennett, Peach and Peristiani (2001) for US.
employment or by a change in demographic composition towards households with a greater propensity to indebtedness. It should be borne in mind that, insofar as credit constraints are in place, these factors may have non-linear effects. Thus, for instance, an increase in employment may translate into a rise in household debt not only because of the associated growth in their expected income but also owing to the lifting of the restrictions on the unemployed regarding access to the credit market.

1.2 Empirical evidence

Firstly, it should be pointed out that the empirical evidence on the determinants of household borrowing using aggregate data is not very extensive owing to information availability problems. Consequently, most papers have focused on analysing household debt and non-financial companies jointly.

For this reason, some studies have resorted to microeconometrics to examine household debt using the information provided by the surveys on the sector conducted by certain countries. Tudela and Young (2005) for the United Kingdom, or Magri (2002) for Italy, find that variables such as income, wealth and interest rates play a significant role when explaining household debt. In this connection, Spain has the Encuesta Financiera de las Familias (Survey of Household Finances), although only the 2002 survey is available, which makes it impossible at present to conduct a study of this type.

As regards empirical analyses with aggregate data, the approach traditionally adopted has been to study the factors behind the various agents’ demand for financing, assuming that the volume of credit available is determined by demand, which is provided in an elastic fashion by credit institutions. Some papers have highlighted the need to incorporate characteristics intrinsic to the credit market (e.g. Blundell y Gizycki (1992)), but information availability problems and the difficulty of isolating factors that affect, exclusively, the supply and demand curves have limited the application of this approach.

Accordingly, a large proportion of the studies conducted have adopted a more pragmatic position, incorporating all those elements of relevance in explaining credit developments, ruling out the identification of supply and demand factors in separation, and pointing out that the different variables incorporated reflect both effects.

An initial group of studies estimated models without delving into the potential interrelatedness of real and financial variables, incorporating a long-run relationship where the scale variable was assumed to be exogenous. Thus, for the Spanish case, the results obtained in Manrique and Sáez (1998), Del Río (2002) and Nieto (2003) show that, in the long run, household debt depends positively, and in all cases with a coefficient higher than unity, on the indicator of activity, and negatively on the cost of financing.

Other papers do consider the possible simultaneousness of household spending and borrowing, and duly incorporate vector error correction models. Such is the case of the papers by Chrystal and Mizen (2001) for British households, and by Martínez-Carrascal and Del Río (2004) for Spanish households. In both instances a long-run relationship is found for credit in which it depends positively on household consumption and wealth, and negatively on interest rates. These studies also
ascertain which variables adjust and in what proportion when credit and/or consumption deviate from their long-run paths.

Another important group of studies, as mentioned at the start of this section, has focused on analysing non-financial private-sector indebtedness\textsuperscript{11}, estimating Vector Auto Regression (VAR) models with a long-run relationship in which credit is the only endogenous variable. Among these we can highlight those by Calza et al (2001 and 2003) for the whole of the euro area and by Hofmann (2001) for a set of more industrialised countries. In both cases credit is found to depend positively on GDP, with an elasticity around 1.5, and negatively on the cost of borrowing (in this case there is greater dispersion in the coefficients obtained). In addition, Hofmann conducts a comparative analysis of the estimated equations incorporating the price of housing, so as to see whether changes in property prices help better explain developments in financing. In virtually all countries, with the exception of Spain, this variable proved significant, with a positive relationship being obtained between household credit and household wealth, proxied by house prices. Nonetheless, for the case of Spain, subsequent papers, such as that by Gimeno and Martínez-Carrascal (2006) which analyses the possible bidirectional interaction between credit for house purchases and property prices, find there is interdependence between both variables. The results obtained also show that disequilibrium situations relative to their long-run equilibrium paths entail adjustments in both endogenous variables. This highlights the importance that the behaviour of the property sector has had on household financing developments.

3. ESTIMATION OF A MODEL FOR CREDIT TO SPANISH HOUSEHOLDS

This section presents the results of the estimation of a single-equation model for credit extended by resident financial institutions to households. Specifically, the following error correction model has been estimated:

\[ \Delta y_t = k + \alpha(y - \beta' \bar{x})_{t-1} + \delta(L)[\Delta y_t, \Delta \bar{x}_t] + \varepsilon_t \]  

(1)

where \( y \) is the logarithm of the outstanding balance of credit in real terms, deflated by the CPI, and \( \bar{x} \) is the vector of explanatory variables. This formulation includes both a long-run relationship, \( \beta' \bar{x} \), and the short-run dynamic which is captured with the function of variables in differences, \( \delta() \), and with the error correction term \( \alpha(y - \beta' \bar{x})_{t-1} \).

3.1 Specification of the model

The model presented in Nieto (2003) has been taken as a starting point, introducing new variables on the basis of the theoretical considerations made in section 2. The model finally chosen includes the following regressors: as a scale variable, household consumption plus household residential investment\textsuperscript{12}; as the cost of loans, the interest rate on the sector’s new credit business\textsuperscript{13};

\textsuperscript{11} Encompasses households and NPISHs and non-financial corporations.

\textsuperscript{12} Other scale variables, such as income, were considered. The results obtained were similar to those presented in this paper.

\textsuperscript{13} This interest rate is constructed as a weighted average of the cost of bank financing for house purchases by households and the related cost of credit for consumption and other purposes. The weights used are obtained from the breakdown of loans according to purpose. The information on interest rates on new business has been available since 2003. Prior
the sector’s total gross wealth (financial plus real estate) as an indicator of the household financial position; the repayment term for outstanding credit\(^{14}\) in order to show some additional supply-side conditions to those directly included by the cost of loans; and, lastly, the interest rate on long-term debt, potentially reflecting current expectations about the future course of the cost of borrowing and of the overall economic situation. In addition, qualitative variables related to the credit restrictions in the late 80s have been included. Credit, the scale variable and wealth are in logarithms and in real terms\(^{15}\), while the remaining regressors are in levels and in nominal terms, with the exception of long-term rates, which have been deflated by actual inflation at each point in time.

That the interest rate on bank loans in nominal terms, and not in real terms, is included is related to the fact that, in addition to proxying the cost of borrowing, this variable would also be reflecting the potential influence of factors relating to the supply of credit. In particular, the volume of funds that financial institutions will be prepared to lend usually observes a prudential criterion which establishes that the initial amount of the loan should not exceed a specific percentage of the borrower’s current income. The degree of restriction imposed by this criterion depends on the nominal interest rate, on the term of the loan and on the individual’s current income\(^ {16}\).

As regards the wealth variable, its inclusion in the long-run relationship is new compared with the model estimated in Nieto (2003), in which it was not statistically significant. In this respect, household total wealth and, in particular, household real estate wealth has expanded most substantially in the past decade as a result of the high growth in house prices. Insofar as property is households’ main collateral for obtaining financing, and in a setting in which loans for house purchases have, on average, entailed 65% of the total loans extended by credit institutions to households, developments in the property sector may clearly have played a fundamental role in explaining the increase shown by household debt in Spain\(^ {17}\).

Further, and with the aim of reflecting other supply-side factors, which have traditionally been difficult to introduce into aggregate-level equations, the long-run relationship incorporates the repayment term for outstanding credit, which has practically doubled over the period analysed. The inclusion of this variable is also new compared with the model estimated in Nieto (2003).

3.2 Main results

The existence of a well-defined long-run relationship between the variable to be explained and its regressors requires, firstly, that the variables at play in this relationship should have the same degree of integration. To analyse this, the augmented Dickey-Fuller (ADF) and Phillips-Perron (PP) tests have been used. The results, shown in Table 1, indicate that for variables in levels the null hypothesis of the existence of a unit root cannot be rejected. For the first difference this hypothesis is clearly rejected, except for credit and for consumption plus residential investment, where the results of the two tests are less conclusive.

---

14 Calculated as a weighted average of the terms of the various types of credit according to purpose.
15 The CPI is used as a deflator, except for consumption and residential investment, where the related deflator is employed.
16 For greater detail see the annex in Martínez-Carrascal and Del Río (2004).
17 For a more detailed analysis of the interaction between house prices and credit, see Gimeno and Martínez-Carrascal (2006).
In order to determine the number of cointegrating relationships, I estimated a VAR model\textsuperscript{18}. According to the results, presented in Table 1, both, the trace statistic and the maximum eigenvalue test support the hypothesis of one cointegrating relationship, when small sample correction is used.

On the basis of these considerations, a model with an error correction mechanism has been estimated by means of the one-stage estimation procedure. As can be seen in Table 2, a long-run equilibrium relationship is found in which credit depends positively on consumption plus residential investment, on wealth and on the repayment term, and negatively on the cost of obtaining the funds and on the unemployment rate. That is to say, households tend to increase borrowing when faced with increases in their spending or situations of low unemployment, which normally coincide with cyclical upturns, and also in the event of an improvement in the terms of access to financing, which may be linked to an increase in household wealth, to greater repayment terms for the credit applied for and/or to the lower cost of this debt. In the short run, movements in long-term government debt yields, which may be informative as to expectations about how interest rates and the general economic situation are evolving, show a negative relationship to the changes in household loans, and the same sign as that shown by the change in the unemployment rate. Lastly, the fourth lag of the endogenous variable reflecting the seasonal behaviour of household financing is included.

\begin{table}[h]
\centering
\caption{Analysis of the order of integration and cointegration}
\begin{tabular}{|l|c|c|c|c|c|c|}
\hline
\textbf{Variable} & \textbf{Level} & \multicolumn{2}{c|}{\textbf{First difference}} & \multicolumn{2}{c|}{\textbf{Order of integration}} \\
\hline & \textbf{No. of lags} & \textbf{ADF} & \textbf{PP} & \textbf{No. of lags} & \textbf{ADF} & \textbf{PP} \\
\hline
Credit (b) & c & 0 & 1.19 & 1.54 & 3 & -0.69 & -4.28\textsuperscript{***} & 1/2 \\
Consumption and investment (b) & 4 & 2.00 & 7.77 & c & 0 & -2.43 & -4.07\textsuperscript{***} & 1/2 \\
Total wealth (b) & 3 & 1.84 & 4.96 & c & 0 & -2.15 & -3.56\textsuperscript{***} & 1 \\
Nominal interest rate on credit & 6 & -1.71 & -1.36 & 5 & -2.69 & -3.28\textsuperscript{***} & 1 \\
Repayment term & c & 2.66 & 2.66 & c & 0 & -8.09 & -8.90\textsuperscript{***} & 1 \\
Unemployment rate & 1 & -1.27 & -1.03 & 0 & -3.69 & -3.95\textsuperscript{***} & 1 \\
Real long-term interest rate & 0 & -1.16 & -1.13 & 0 & -7.14 & -7.04\textsuperscript{***} & 1 \\
\hline
\end{tabular}
\end{table}

\begin{table}[h]
\centering
\caption{Johansen test for cointegration (c)}
\begin{tabular}{|c|c|c|c|c|}
\hline
\textbf{Hc rank } = r & \textbf{Trace test statistic} & \textbf{Small sample correction} & \textbf{95\% critical values} & \textbf{Trace test statistic} & \textbf{Small sample correction} & \textbf{95\% critical values} \\
\hline
r = 0 & 71.71 \textsuperscript{**} & 69.02 \textsuperscript{**} & 89.40 & 151.2 \textsuperscript{**} & 127.4 \textsuperscript{**} & 94.29 \\
r = 1 & 69.71 \textsuperscript{**} & 67.09 \textsuperscript{**} & 86.60 & 100.11 \textsuperscript{**} & 87.46 \textsuperscript{**} & 65.60 \\
r = 2 & 26.04 & 21.33 & 27.10 & 45.49 & 39.08 & 47.20 \\
r = 3 & 14.92 & 12.57 & 21.00 & 20.26 & 17.15 & 29.70 \\
r = 5 & 1.63 & 1.63 & 8.00 & 1.63 & 1.63 & 8.00 \\
\hline
\end{tabular}
\end{table}

\textit{a.} The null hypothesis is the presence of a unit root. \textsuperscript{***}, \textsuperscript{**} and \textsuperscript{*} denote the rejection of the null hypothesis at significance levels of 1\%, 5\% and 10\% respectively, based on the critical values of MacKinnon (1996). ADF denotes the augmented Dickey-Fuller test (with lags up to and including the highest lag that is statistically significant, at least at the 5\% level). PP denotes the Phillips-Perron test. When a constant is included, it is represented by the letter ‘c’.

\textit{b.} In real terms.

\textit{c.} The VAR model includes two lags of endogenous variables specified in levels. The constant term is unrestricted. \textsuperscript{*} (\textsuperscript{**}) denotes existence of cointegration at 5\% (1\%) significance level.

\textsuperscript{18} The model included two lags of endogenous variables in levels (credit, consumption plus household residential investment, wealth, interest rate, unemployment rate and the repayment term of outstanding credit).
Regarding the values of the estimated coefficients, it should first be pointed out that the velocity of adjustment (-0.27) is almost double that obtained in previous papers for Spanish households (Del Río (2002) and Nieto (2003)) and almost four times that obtained, for example, by Calza et al. (2001 y 2003), in estimations for total credit to the non-financial private sector in the euro area. That would be reflecting the fact that the response of debt in restoring long-run equilibrium is fairly rapid, with the observed deviation being corrected in a year. Also, the cointegration test...
based on the \( t \) statistic of the error correction mechanism does not enable the null hypothesis of cointegration for the long-run relationship to be rejected at the 1% significance level\(^{20}\).

As regards the long-run relationship, the elasticity of consumption plus residential domestic investment is below one and lower than that obtained in the other papers mentioned here, although in most cases the scale variable used has differed (household income or GDP). This result is, however, in line with money demand studies that also include wealth as a determinant in the long-run relationship. Therefore, the low elasticity of the scale variable is possibly related to the complementary role played by expenditure and wealth in proxying household permanent income. As to the cost of borrowing, the estimated effect (-1.6) is less than that obtained in specifications for Spanish households (Manrique and Sáez (1998) and Nieto (2003)), although it is close to the values obtained in papers on credit to the private sector in the euro area (Calza et al (2001)) or the paper by Hofmann (2001) for various industrialised countries.

As far as the wealth variable is concerned, the estimated value for the coefficient (0.62)\(^{21}\) is at an intermediate point between the figure of 0.48 obtained by Martínez-Carrascal and Del Río (2004) and that of 0.78 by Gimeno and Martínez-Carrascal (2006) in estimations made for Spain\(^{22}\). It is also in the proximity of the results of Hofmann (2001) in equations, for various industrialised countries, of the determinants of credit to the private sector that included house prices as a regressor.

The estimated parameter for the repayment term of outstanding credit means that an increase of one year in the repayment period entails an increase of 2.3% in the long-run equilibrium level of household loans. Lastly, a negative coefficient with a value in line with that estimated in Del Río (2002) and Nieto (2003) is obtained for the unemployment rate.

The specification tests are relatively satisfactory. The cointegration hypothesis is not rejected, while the intra-sample stability of the parameters is reasonable and there does not appear to be significant autocorrelation in the residuals. To evaluate the predictive power of the model\(^{23}\), forecasting errors at different horizons have been calculated, both within and out of the sample for the period running from 2005 Q1 to 2006 Q2. Using the mean square error as an indicator, errors committed for horizons between one and six periods ahead stand at around 0.5% of the average level of the series both for in-sample and out-of-sample forecasting. In addition, in terms of the growth rate of household credit, the errors in out-of-sample forecasting in no circumstances exceeded one percentage point during the 18-month period analysed\(^{24}\). As can be seen in Chart 3, comparison of the predictive power of the model presented here compared with that estimated in Nieto (2003) shows a substantial improvement, as notably lower forecasting errors are obtained.

---

20 The critical values presented in Banerjee et al. (1998) have been taken.

21 The value of this coefficient is close to the average loan-to-value ratio of loans granted by credit institutions to households between 2004 and 2006 (63%).

22 In the latter case the higher value may be due to the fact that the endogenous variable used is only credit for house purchases, which is more collateralised than other credit.

23 This factor is important as the model estimates may be used for the different forecasting exercises conducted at the Banco de España.

24 Actual average year-on-year growth in the last six quarters was 20.5%.
The estimation performed entails an increase in the equilibrium level of credit during the period considered, which would be reflecting the adaptation of household spending decisions to the new macroeconomic environment stemming from euro area membership and from the reforms undertaken in the labour market. In addition, the substantial reduction in the cost of borrowing, combined with the growth of household wealth and the liberalisation of and heightened competition in the banking industry, which has prompted a more expansionary lending policy, has resulted in greater possibilities for Spanish households to take on debt. As can be seen in Chart 4, household debt has increased during the period analysed in line with the estimated equilibrium path, standing in 2006 slightly above this path.

To assess the relative significance of the effect that the various explanatory factors have had on developments in household credit, Chart 4 shows the contribution of the determinants to household debt growth. The sizeable and growing contribution of wealth is noteworthy, having risen from accounting for around 30% of the expansion in household financing in the late 90s to over 60% in the past three years. The rise in household spending has also played a key role, contributing an average in the past decade to around 30% of the growth in household loans. As to the cost of borrowing, this made a significant positive contribution between 1996 and 1999, but one which came to a halt in the following years owing to the rise in interest rates; subsequently, the fresh decline in the cost of loans once again fuelled the expansion in household borrowing, albeit to a lesser extent than in the late 90s, contributing in a very limited and even non-existent way as a result of the change in monetary policy stance that has occurred in the recent period. The repayment term has helped explain part of the substantial growth recorded since 2000, as the residual maturity of

\[ \text{It should be recalled that this analysis is usually conducted assuming that, on average, credit has not deviated from the level implied by fundamentals during the period analysed, i.e. the average deviation is zero.}\]
outstanding credits has increased in this period by more than four years. That has enabled households to obtain a greater volume of funds without increasing the financial burden associated with this debt excessively. Lastly, the significant job creation recorded in the past decade, albeit with discrete decreases, has also contributed positively, by around 7.5% on average, to the expansion of household financing. The unexplained component is generally fairly small, accounting on average over the past 10 years for 1% of the course of the endogenous variable.

RESULTS OF THE ESTIMATION FOR CREDIT TO HOUSEHOLDS AND NPISHs

**LONG-RUN PATH AND DEVIATIONS**

- DEVIATIONS FROM LONG-RUN PATH (right-hand scale)
- ACTUAL LEVEL
- ESTIMATED LEVEL

**CONTRIBUTIONS TO THE YEAR-ON-YEAR GROWTH OF CREDIT IN REAL TERMS**

- OTHER
- LONG-TERM RATE
- UNEMPLOYMENT RATE
- REPAYMENT TERM
- WEALTH
- CREDIT RATE
- CONSUMPTION + RESID. DOMESTIC INVEST.
- TOTAL

SOURCE: Banco de España.

a. Standardised to obtain a zero average in the sample period.
b. Data to 2006 Q2.
1.3 Stability analysis

Unlike in Nieto (2003), in this case there is no evidence of instability of the parameters estimated. To analyse this, several types of exercises have been conducted. First, a test was performed on the recursive residuals using the CUSUM and CUSUMQ statistics, the indication being in both cases that the null hypothesis of stability is not rejected (see Chart 5).

In addition to these joint tests on the model’s stability, a recursive estimation of the coefficients has also been made on the basis of the first 49 observations, adding an additional figure each time. As can be seen in Charts 6 and 7, the parameters have not changed substantially in the period under study. However, the problem with this analysis is that the weight of the last observations introduced is not very big relative to the history of the series, whereby the estimated coefficients tend to reflect the changes very slowly. In an attempt to correct this, rollover estimates have been made in which a constant-size moving sample of 49 observations is used. In this way the problem with the previous approach is avoided, although the results should be interpreted with caution since, as a smaller sample is involved, the confidence bands of the parameters estimated are fairly large. In any event, the results obtained did not actually show significant changes in the coefficients obtained. The only point of note would be the increase in the sensitivity of credit to the cost of financing and to the unemployment rate. In both cases this result may be associated with the non-linear effect of both variables on the demand for funds, and it might be a reflection of the lessening of the restrictions to which a specific group...
of households might have been subject in the past. The significant reduction in interest rates and in the unemployment rate during this period has thus led to a substantial number of households, previously denied access to the credit market, being able now to resort to it, thereby increasing the effect that these variables have on financing.
In sum, the results of the tests performed for the sample as a whole indicate that the relationships derived from the equation presented may be considered stable overall for the period analysed.

4. CONCLUSIONS

The potential consequences that changes in credit extended to households may have for an economy’s macroeconomic and financial stability make it necessary to have tools at hand providing for the ongoing analysis and assessment of credit developments, and for the obtaining of forecasts on its future behaviour. In this connection, this paper estimates a single-equation model for household borrowing, consistent with a working framework in which the determinants are set exogenously by a general macroeconomic model.

The results obtained indicate that household financing is determined in the long run by the sector’s real spending, its gross wealth and the repayment term of outstanding loans, which exerts a positive influence, and by the cost of loans and the unemployment rate, the influence of which is of a negative sign. Short-term developments are influenced by changes in long-term rates and in employment.

The evidence provided in this paper suggests that, generally, financing received by households in the period analysed is in line with what may be inferred from fundamentals. Thus, the significant increase in household wealth, combined with considerably buoyant household spending, with the environment of greater macroeconomic stability - which made for a substantial decline in interest rates and for higher levels of employment - and, moreover, with financial institutions’ more expansionary lending policies, appear to have played a key role when explaining the expansion of households’ borrowed funds.
Nonetheless, this should not mask the fact that the high volume of debt attained entails greater exposure of households to unexpected changes in their income, their wealth or the cost of financing, especially against a background in which floating-rate loans are increasingly significant. Indeed, on aggregate data, saving not earmarked for debt service has fallen continuously since 1995, and even turned negative in 2006.

In any event, a complete assessment would require complementing this analysis with others of a more microeconomic nature on the distribution of debt, income and wealth in the total population, in order to identify specific groups of agents who are in situations of greater vulnerability than that prevailing for the sector as a whole.

Finally, it should be pointed out that the foreseeable course of the main determinants of credit does not seem compatible with a nominal growth rate of around 20%. Accordingly, the rate of increase of household financing will have to moderate substantially to prevent the high level of debt from becoming excessive and ultimately having an adverse impact on household consumption and residential investment.

5. REFERENCES


---

26 Obtained as household gross saving less repayment of the debt incurred.


